SQL in Easy Steps
What is SQL?

- Databases allow collections of data to be stored in an organized manner. SQL
commands are known as “queries” and utilize special keywords that can be used
both to add data to a database, or extract details of data contained within a
database.

Forms of SQL query

- How to execute SQL queries using a variety of popular software:
o Microsoft Access
= The SQL View allows you to enter SQL queries to be executed when
you click 'Run button
o Microsoft SQL Server
= The SQL Server DBMS products from Microsoft are popular. SQL
queries can be executed from the SQL Server Management Studio
o Microsoft Visual Studio
= Visual Studio can be used to create computer programs that make
queries against a database via an ODBC Data Source.
o Oracle
= The Oracle DBMS is popular and widely used in commerce.

o IBMDB2
= Powerful multi-platform database system.
o MySQL

= The world’s most popular open-source database server
= www.mysgl.com/downloads/mysql

ODBC driver

- Usually, third-party client applications can only connect to the MySQL server if an
appropriate Open DataBase Connectivity (ODBC) driver is installed on the system.
o www.mysgl.com/downloads/connector/odbc
o Start> Control Panel > Administrative Tools > Data Sources (ODBC)
o Choose the System DSN tab, click on the Add button, then Select the MySQL
driver from the list and click finish

o The default name for a local server is “localhost” and port 3306 is the default
port used by the MySQL database server


http://www.mysql.com/downloads/mysql
http://www.mysql.com/downloads/connector/odbc

Using Microsoft Query tool

- Canbe usedto make SQL queries to a database.

o Launch Excel then select From Other Sources > From Microsoft Query on
Excel’s Data menu

o When the Choose Data Source dialog appears select the MySQL Databases
item then click OK

o Add Table dialogs that appear to pen the Microsoft Query Window, then
select File > Execute Query to open the Execute Query dialog

o Type Show Databases into the SQL statement field of the Execute SQL dialog
Click the Execute button

Introducing databases

- Databases are simply convenient storage containers that store data in a structured
manner.
o Atthe mysql> prompt type exit, quit or \p then hit Return to close the MySQL
monitor

Query that can be used to reveal all existing databases
o Show databases;
=  Terminate each SQL query with a semi-colon in the MYSQL monitor
= [|tis conventional to use uppercase characters for all SQL keywords

Creating a database
o Queryto create a brand new database
= Create database database-name;
= Tofirst check to see if a database already exists:
e Create database if not exists database-name;
o Use only lowercase characters for all database names
to avoid any confusion of case-sensitivity

Deleting a database
o Drop database database-name;
o Drop database if exists database-name;

Running SQL scripts

- Anumber of SQL queries can be created as an SQL script which can then be run by
MySQL. The scriptis simply a plain text file with a “.sql” file extension.

- Comments can usefully be added to SQL scripts to explain the purpose of particular
queries.

- Multi-line C-style comments begin with “/*” and end with “*/”



Exploring database tables

- Tell MySQL which database to use with query:
o Use database-name;

- View alist of all the tables it contains:
o Show tables;

- To examine any table format its column specifications
o Explain table-name;

Creating a table

- Anewtable can be created in a database
o Create table table-name;

- To ensure that a table of the specified name does not already exist:
o Create table if not exists table-name;
- This query must be followed by parentheses defining the name of each column and
the type of data that it may contain. Each column definition is separated from the
next by a comma
+ #list all databases
o Show databases;

+ Use the “my_database”
o Use my database;

+ Create a table called “fruit” with 3 columns
o Create table if not exists fruit

(

Id Int,

Name Text,

Color text

);

4+ Show that the table has been created

o Show tables;
4+ Confirm the “fruit” table format
o Explain fruit;

O O O O O

Deleting a table

- Atable can be deleted from a database using this query:
o Droptable table-name;

- To ensure that a table of the specified name does not already exist:
o Droptable if exists table-name;



- The deletion of both tables can be accomplished with a single drop table query:
o Drop table if exists dogs, fruit;
o The deletion is permanent and there is no “undo” facility

Table field modifiers

- Modifier keywords can optionally be used to further control column content:

Modifier Purpose
Not Null Insists that each record must
include data
Unique Insists that records may not
duplicate any entry
Auto_Increment Automatically generate a number

that is one more than the previous
value in that column

Default Specifies a default value to be used

Primary Key Specifies the column to be used as
the primary key for that table

- Example:

o “ID” column automatically numbers each row and the “qty” column will
contain 1 unless another value is inserted. All other columns must contain
datavalues

- Use the “my_database”

o Use my database;

- Create a table called “products” with 5 columns

o Create table if not exists products

(
Id Int unique Auto_Increment,
Code int Not Null,
Name Varchar(25) Not Null,
Qty Int Default 1,
o Price decimal(6,2) Not Null
- Confirm the “Products” table format

O O O O O

o Explain products;

Delete this sample table
o Drop table products;

Setting the primary key

- A“constraint” thatis applied to a column to uniquely identify each row of that
database table.



o Eachfield inthat column must have a value
o Eachvalue inthat column must be unique
- Primary key can be set elsewhere in the Create Table query by starting the name of
the column in parentheses after the Primary Key keywords

- Example:

o Use my database;

o Create table if not exists cups
=
= |d Int auto_increment primary key,
= Cup_pattern varchar(25)
] );

o Create table if not exists saucers
=
= Id int auto_increment,
= Scr_pattern varchar (25), Primary key (id)
=)

o Explain cups; explain saucers;

o Drop table cups, sacuers;

Altering a table

- The format of an existing database table can be changed with an Alter Table query.
- Add acomplete new column

o Altertable table-name

o Add column name data-type optional-modifiers;
- Add a primary key

o Altertable table-name

o Add primary key (column-name);
- Change the name of an existing column

o Altertable table-name

o Change old-column-name new-column-name

o Date-type optional-modifiers;
- Permanently delete an entire column

o Altertable table-name

o Drop column column-name;
-  Example:

o Use my database;

o Create table if not exists dishes

=



= |d int not null,
= Pattern varchar(25) not null,
= Price decimal(6,2)
=)
Explain dishes;
Alter table dishes
= Add primary key (id)

o

(@)

= Addcolumncode int unique not null,
= Change pattern dish_pattern varchar(25) notnull,
=  Drop column price;

o Explain dishes;

o Droptable dishes;

Inserting complete rows

- Data can be inserted into an existing database table with an Insert Into query
o Insertinto table-name values (value, value);
o Insertjust one row into the database table. A data value must be specified
for each column in the corresponding order.
o Alldata contained in a table can be displayed with a Select query using the *
wildcard and From keyword:
= Select * from table-name;
-  Example:
o Use my database;
o Create table prints
=
= |d int not null,
= Code varchar(8) not null,
= Name varchar(20) notnull,
=  Primary key(id)
=)
o Insertinto prints values
=
= 1,“624/1636”, “Lower Manhattan”
=)
o Insertinto prints values
=
= 2,“624/1904”, “Hill Town”
=)



o Insertinto prints values
=
= 3,“624/1681”, “Roscoff Trawlers”
] );

o Select* From prints;

o Droptable prints;

Including a columns list

- ThelnsertInto can be improved by adding a “columns list” to explicitly specify the
table column
o Insertinto table-name (column, column)
o Values (value, value);
-  Example:
o Usemy database;
o Create table towels
=
= Code varchar(8) not null primary key,
= Name varchar(20) notnull,
= Color varchar(20) default “White”
=)
o Insert 3 records into the towels table
= Insertinto towels (code, name, color)
e Values (“821/7355”, “Dolphin”, “Blue”);
= [Insertinto towels (color, code, name)
e Values (“Lilac”, “830/1921”, “Daisy”);
= [Insertinto towels (code, name)
e Values (“830/2078”, “Starburst”);
o Select * From towels;

Inserting selected data

- Datacan be inserted into a table from another table with an Insert Select query
o Insertinto destination-table (column, column)
o Select * From source-table;
- Example:
o Use my database;
o Create table bath_towels
=

e Code varchar(8) not null primary key,



e Name varchar (20) not null,
e Color varchar(20) default“white”
°* )
o Insertinto bath_towels (code, name, color)
= Values (“821/9735”, “Harvest”, “Beige”);
o Insertinto bath_towels (code, name, color)
= Values (“821/9628”, “Wine”, “Maroon”);
Show tables;
Select * from bath_towels;
Select * from towels;
Insert into bath_towels (code, name, color)
Select * from towels;
Select * from bath_towels;

O O 0 O O O

Updating data

- Allthe data contained within a column of a database table can be changed with an
update query
o Update table-name set column-name = value;
- Query willupdate every field in the specified column with the single specified value
- Example:
Use my databse;
Select * from bath_towels;
Update bath_towels set color = “White”;
Select * From bath_towels;

o O O O

Changing specific data

- Therow can be identified by adding the Where keyword to the Update query to
match a value in a specified column
o Update table-name set column-name =value
o Where column-name = value;
- Example:
o Use my _database;
o Select * From bath_towels;
o Update specific field in the “color” column
= Update bath_towels
e Setcolor="“Beige” where name =“Harvest”;
=  Update bath_towels
e Setcolor=“Blue” where name =“Dolphin”;



= Update bath_towels
e Setcolor="“Lilac” where name =“Daisy”;
= Update bath_towels
e Setname =“Tempest”, color=“Maroon”
e Where code =%“821/9628";
o Select * from bath_towels;

- Thefinal update query more correctly identifies the row by its primary key value in
the “code” column

Deleting Data

- Rows can be removed from a database table with a Delete query
o Delete from table-name;
- Specific row can be removed from a table by adding Where
o Delete from table-name where column = value;
-  Example:
o Use my _database;
o Select * From bath_towels;
o Delete two specific rows
= Delete from bath_towels where code =“821/9735”;
= Delete from bath_towels where code =“821/7355”;
Select * From bath_towels
Delete all remaining rows
= Delete from bath_towels;
Select * From bath_towels;
Drop table towels;
Drop table bath_towels;

Retrieving data from tables

- Retrieve only data from the particular column
o Select * From table-name;
o Select column-name From table-name;
-  Example:
o Use my_database;
o Create table if not exists microwaves
=
= |d int auto_increment primary key,
= Maker varchar (20) not null,
=  Model varchar (20) not null,



=  Power Int not null
")
o Insert datainto the “microwaves” table
= Insertinto microwaves (maker, model, power)
e Values (“Sharp”, “R254SL”, 800);
o Show all data
=  Select * From microwaves;
=  Select maker from microwaves;
=  Select model from microwaves;
- Aselect query canreturn the data from multiple columns by including the required
column names as a comma-delimited list
o Select column, column, column From table-name;
-  Example:
o Show all data
=  Select * From microwaves;
o Show alldatain “ID” and “maker” columns
= Selectid, maker From microwaves;
- ASelect query can retrieve a specific row from a database table if it includes the
Where keyword
o Select * From table-name Where column = value;
-  Example:
o Show all datainrow 2
=  Select * From microwaves Where id=2;
- Database tables can be created dynamically by combining a Create Table query
with a Select query
o Create a table called “800w_microwaves” and copy all 800w microwave data
from “microwaves”
= (Create table if not exists 800w_microwaves
= Select* From microwaves Where power = 800;
Show tables;
Select * From 800w_microwaves;

O O O

Select * From microwaves;
o Drop table if exists 800w_microwaves;
- Specific fields of a table can be copied into specific fields of another table using an
Insert Into query
o InsertInto table-name (column, column)
o Select column, column Where column =value;
- Example:



o Create table sharp_ovens
=
= |d int auto_increment primary key,
=  Model varchar (20) not null,
=  Power int not null,
= Grill varchar(3) default “No”
=)
o Insertdata into the “sharp_ovens” table
= |nsertinto sharp_ovens (model, power, grill)
e Values (“R654”,800,’Yes”)
o Copy specific fields from “microwaves” to “Sharp_ovens”
= [Insertinto sharp_ovens (model, power)
= Select model, power From microwaves
*  Where maker=“Sharp”;
o Show all data
=  Select* From sharp_ovens;
o Deletetables
= Drop table microwaves;
= Droptable sharp_ovens;

Sorting retrieved data

- The datareturned by a Select query may not always appear in the same order as the
rows of the table — especially following updates that that table. To explicitly sortinto
a specified order using Order By:

o Usemy database;
o Create atable called “critters”
= Create table critters
e (
e Id int primary key,
e Name varchar (20) not null
°* )
o Insertrecordsinthe table
= Insertinto critters (id, name), values (3, “Beaver”);
= Insertinto critters (id, name), values (1, “Duck”);
o Show all data in numerically ordered format
=  Select * From critters Order By id;
o Show the name column in critters alphabetically
= Select name From critters Order By name;



- Order By clause can sort retrieved data by multiple columns
o Selectid, name from Critters
o Order By name, critters;
- Order By clause can optionally refer to a column of retrieved data by its position
o Selectid, name From Critters Order By 2
- By default Select queries are automatically sorted in ascending or descending order
o Select * From Critters order By Name ASC;
o Select * From Critters order By Id DESC;

Simple data filtering

- Most commonly recognized comparison operators:

Operator: Description:
= Equality
I=or<> Inequality
< Less than
<= Less than or equal
> More than
>= More than or equal
Between min And max Within the range min to max
IS NULL Isa NULL value
IS NOT NULL Is nota NULL value
- Comparing a single value

-  Example:
o Use my database;
o Create atable called “clock radios”
=
= Code char(8) primary key,
= Make varchar(25) notnull,
=  Model varchar (25) not null,
= Price decimal (4,2) not null
=)
o Insertrecords into the table
= Insertinto clock radios (code, make, model, price)
e Values (“512”, “Alba”, “C2108”, 6.75);
e Values (“280”, “Hitachi”, “KC30”, 8.99);
e Values (“350”, “Sony”, “C253”, 19.99);
e Values (“350”, “Sony”, “C250”, 14.99);
o Show records if price is below 7.99
=  Select* From clock_radios Where price <7.99



o Show all records where the price is between 6 and 10
= Select* From clock_radios
=  Where price between 6 And 10;
o Show records where make is between Alba and Sony
= Select * From clock radios
=  Where make between “A” and “S”;
o Show all records where make is not “Sony”
=  Select* From clock radios where make !=“Sony”
o Show all records where there is no make
=  Select * from clock_radios where make is null
A where clause in a select query can make multiple comparisons using the And
logical operator
o Select data from table-name
o Where column = value And column = value;
o Show all records where the make is “Sony” and the price is above 15
= Select* From clock_radios
=  Where make =“Sony” AND price > 15;
A where clause in a select query can make multiple comparisons using OR logical
operator
o Show all records where the make is not “Sony” or the price is below 15
=  Select * from clock _radios
= Where make !=“Sony” or price <15
A where clause in a select query can specify a list of alternative value for
comparison with column data using the IN keyword
o Show records where make is “Sony” or “Hitachi” and the model is not “KC30”
or “C2108”
= Select * From clock radios
=  Where make in (“Sony”, “Hitachi”)
= And modelnotin (“KC307”, “C2108”);
A where clause in a select query can contain any number of comparison tests using
the AND and OR keywords
o Show records where make is “Sony” or “Hitachi” and price is 14.99
= Select* From clock_radios
=  Where (Make =“Sony” or make = “Hitachi”)
= And price =14.99;
The Like keyword offers to make comparisons against text strings without requiring
an exact complete match
o Selectdata from table-name



o Where column Like search-pattern;
o Show records where the model is “C250” series
=  Select * From clock radios where model like “%C25%”;
e 9% wildcard represents zero, one or more charactersin a

pattern
e “_”isused forjusta single characterin a search pattern (i.e.,
So_yorS_y
- REGEXP =regular expression used in search pattern to denote their significance
Expression Matches
“A” Containing a single character
“IABC]” Containing one of characters
“IA-K]” Containing characters from A-K
“[0-5]” Range of digits like above
“rM” Any string starting with letter
“H$” Any string ending with letter

o Records where the name contains W
=  Where name regexp “W”;

o Records where the name contains W or N
=  Where name regexp “[WN]”;

o Records where the name beings with B
=  Where name regexp “*B”;

o Records where the name ends with H
=  Where name regexp “H$”

o Records where the name begins with Bor C
=  Where name regexp “*[BC]”;

- Put not keyword before the Regexp to return all strings that don’t match the

expression
Generating calculated fields
Concatenating fields

- Acalculated field is created using data stored within several columns of a database.
It’s useful to present a range of data in a formatted manner
- DBMS favor concatenation using the “+” operator:
o Calculated field = column 1+ separator + column 2
o Concat_WS(Separator, column1, column2)
-  Example:
o Use my database;
o Create table if not exist hotels




"
= Name varchar(25
= Street varchar(25

(25) primary key,
(25)
(25)
(25)

= City varchar ,
= State varchar(25),
= Zip Int
=)

o Insertarecord into the “hotels” table
= |nsertinto hotels (name, street, city, state, zip)

e Values (“Las Vegas Hilton”, 3000, “Las Vegas”, “Nevada”,
89109);
= Retrieve 2 concatenated calculated fields
e Select concat (name, “” state) from hotels;
e Select Concat_ WS(“\n”, name, street, city, state, zip)
e From hotels;
o \nadds acomma and a newline separator between

each item of data
Trimming padded spaces

- Allleading and trailing spaces can be removed from a string with the Trim keyword
o Trim (column)
- Most DBMS also support LTRIM and RTIM keywords which trim spaces from the left
and right of the string.
o Select concat (trim(name), “”,rtrim(state)) from hotels;
o From hotels where state = “Nevada”

Adopting aliases

- Assign a meaningful heading to label the calculated field instead
o Select Concat_WS(%”, name, street, city, state, zip)
o As Crazy_Party
o From hotels;



Doing arithmetic

- Perhaps the most useful aspect of calculated field is to perform arithmetical
operations on existing data and present the result

+ Addition

- Subtraction
* Multiplication
/ Division

o Generate calculated fields
= Selectname, street as jangso, zip as doshi,
= Jangso + doshi as ultimate_place

Manipulating data

- SQL function is a keyword that performs a particular pre-ordained operation on a
specified piece of data
- Common functions operations

Operation SQL
Return part of a string Substring|()
Convert a data type Convert()
Return a rounded-up number Ceiling()
Return the current date Curdate()

- Example:
o Use my_database
o Create atable called party
= Create table if not exists party
e (
e Id int auto_increment primary key,
e Dept char(10),
e Name char(25)
°* )
o Insert3records
= [Insertinto party (dept, name)
e Values (“accounts”, “Graham Miller”);
e Values (“Sales”, “Gary Miller”);
e Values (“production”, “Graham Wallace”);
o Get 3 letter sub strings from the dept column
= Select substring (dept, 1,3) from party;
o Getname and length
=  Selectupper (name), lower (name), length (name)



=  From party where dept = “Production”;

o String data which sound similar can be returned using the soundex() function
= Select soundex(name), name from party
=  Where soudex(name)-soundex(“Gary Miller”);

Numeric functions

- Example:
o Getsome square roots
= Selectsqrt (144), sqgrt (125), round(sqrt(125));
o GetPiandrounditup and down
= Select PI(), Ceiling (PK()), Floor(PI());
o Getsomerandom numbers
= Selectrand(), rand()l
o Getsomerandom humbers inthe range 1-1000
= Select ceiling(rand()*100), ceiling (rand()*100);

Date and time functions

- Date, time or datetime data types.

o Getthe current full date object, current date & time
=  Select now(), curdate(), curtime();

o Use my database;

Create table if not exists labor_day

=
= |d int auto_increment primary key,
= Date datetime not null
")

o Insert1record into the labor_day table
= [Insertinto labor_day (date)
=  Values (2014-09-05 12:45:30”);

o Getthe name of the day
=  Selectdayname (date) from labor_day;

o Getthe day, month and year date components
= Select dayofmonth(date), monthname(date), year(date) from

labor_day;

o Getthe hour, minute and second time components
= Select hour(date), minute (date), second(date)
=  From labor_day;
= Use the Between and And keywords to match a range of dates



o Getthe version number and current user
= Selectversion (), user();
o Getthe thread identity
=  Show processlist;
o Create a new user with full privileges
=  Grant all privileges on ** to monty@!localhost
= |dentified by “monty-pwd” with grant option;
o Confirm privileges for the new user
= Show grants for monty@!localhost;
o Droptable if exists labor_day

Finding summary values

- The avg() aggregate function returns a summarized average value of all the values
within the column specified as its argument
- The max() aggregate function returns the single highest value
- The min() aggregate function returns the single lowest value
o Use my database;
o Create table if not exists multimeters
=
= |d int auto_increment primary key,
= Model char(10 not null,
= Price decimal(4,2) notnull
=)
o Insertrecords
= [Insertinto multimeters (model, price)
Values (“Standard”, 11.75);
Values (“Super”, 19.75);
Values (“Super”, 23.00);
e Values (“Deluxe”, 24.99);
o Getthe average price
= Select Max(price) As Max_price, Min(Price) As min_price

*  From multimeters;
- Toreturn the total number of rows
o Count(*)
- Toreturn the number of non-empty rows in a particular column the column’s name
must be specified
o Count(column-name)
o Countthe total number of rows



= Select count(*) as total_number_or_rows
»  From multimeters;
o Countthe total number of rows with model#s
= Select count(model)
*  From multimeters;
o Gettotal cost
= Selectsum (price) as total_price
=  From multimeters where model = “Super”;
Using the Distinct keyword ensured the count() function will only count rows with
unique values in the specified column
o Getthe number of unique rows
= Select count(distinct model) As Count
=  From multimeters;
o Getallthe unique values
= Select distinct model from multimeters;
Data can be grouped by adding a Group By clause to the end of a Select statement
o Getthe number of items for each type
= Select model, count(*) as num_items
=  From multimeters group by model;
o Getthe number of items for each type
=  Select price, count (*) as prices
=  From multimeters group by price;
A Having clause is very similar to a Where clause — except that Where filters rows
and Having filters groups.
o Getthe number of items for each model where the price exceeds 15 and
when there is more than 1 item for that model
= Select model, count(*) As num_items_model
=  From multimeters
=  Where price >=15
=  Group by models
= Having count (*) >1;



o Itisimportant that multiple clauses in a Select statement appear in the
correct order:

Clause Specifies
Select Columns or Expressions to return
From Table to retrieve data from
Where Row-level filter
Group By Column to group around
Having Group-level filter
Order By Return sort order

o Getthe ID # and number of number of items ordered where the model is not
Super and the number of items ordered is fewer than 3 sorted by ID#
= Select /D, Count(*) As Num_Items
*  From multimeters where model !=“Super”
=  Group by /D having count (*)<3 order by ID;
= Drop table if exists multimeters;

Making complex queries

- Sub-queries are useful to retrieve data from a table specifying what an outer Select
statement should return from another table.
-  Example:
o Create table if not exists customers
=
= Acc_num int primary key,
= Name char(20) not null
=)
o Insert2records
= [Insertinto customers (acc_num, name)
= Values (123, “T.Smith”);
= |Insertinto customers (acc_num, name)
= Values (124, “P.Jones”);
o Create table if note exists orders
=
= Ord_num int primary key,
=  Acc_num int not null
=)
o Insert2records
= |Insertinto orders (ord_num, acc_num ) values ( 3, 123 );
= [Insertinto orders (ord_num, acc_num ) values (4, 124 );
o Retrieve the name of the customer placing order 4



= Select ord_num, customers.acc_num, name
=  From customers, orders
=  Where customer.acc_num = orders.acc_num
= And orders.ord_num =4;
e Use the dot syntax to explicitly identify table columns wherever
there is possible ambiguity

Sub-query calculated fields

- Canbe usedto generate a calculated field that returns values from a table to an
outer Select statement
o Getthe number of orders per customer
= Select name, customers.acc_num,
= Count(*) As number_of_orders
=  From customers, orders
= Where customer.acc_num = orders.acc_num
=  Group by name order by customers.acc_num;

Combining queries

- Multiple Select queries can be made to combine their returns into a single result set
using the Union keyword
o Display all data as a single result
=  Select * from customers
= Union
= Select* from orders
- Bydefault Union automatically excludes any duplicate rows from the data returned
by the Select statement.
o Todisplay all data (including duplicates)
=  Select * from customers
=  UnionAll
=  Select * from orders;

Sorting combined results

- The data returned from multiple tables using the Union keyword can be sorted into a
specified order by adding a single Order By clause.
=  Select * from customers
=  Union All
= Select* from orders
=  QOrder By orders.acc_num;



Joining database tables

- The ability to dynamically join together multiple tables with a single Select query is
one of SQL’s most powerful features.
- The data can be returned from multiple joined tables by stating the table names as a
comma-separated list after the From keyword in a Select statement
o Create table if not exists games
=
= |d varchar(10) primary key,
= Vendor int not null,
= Name char(20) not null,
= Price decimal(6,2)notnull
=)
o Insertrecords
= |nsertinto games (id, vendor, name, price)
= Values (371, 1, “Scrabble”, 14.50)
= |nsertinto games (id, vendor, name, price)
= Values (373, 2, “Jenga”, 6.99)
o Create table if not exists vendors

=

= |d int primary key,
= Name char(20) not null,
= Location char(20) not null

=)
o Insertrecords
= |Insertintovendors (id, name, location)
= Values (1, “Matte”, “El Segundo”);
= |Insertintovendors (id, name, location)
= Values (2, “Hasbro”, “El Segundo”);
o Display game code, name, price and vendor name for each game in the two
joined tables
=  Select
e Games.id as product_code,
e Games.name as game,
e \Vendors.name as vendor,
e (Games.price as price

e Games, vendors



=  Where
e \Vendors.id = games.vendor;

Joining multiples tables

- Thereis theoretically no limit to the number of tables that can be joined by a single
Select statement

o Create table if not exists items
=
= |d int primary key,
= Vendor int not null,
= Name char(20) not null,
= Price decimal(6,2)notnull
=)

o Insertrecords
= |Insertintojtems (id, vendor, name, price)
= Values (1,2, “Elephants”, 149.99);
= |Insertintojtems (id, vendor, name, price)
= Values (2,2, “Reindeer”, 123.99);

o Displayld, price, name, vendor and location of id# 2
Select
=  Games.id
= Games. Price
= |tems.name
= [tems.price
= \Vendors.location
o From
= Jtems, games, vendors

o Where

= [tems.id = games.id
o And

=  Games.id = vendors.id
o And

=  Vendors.id = 2;
Creating self joins

- Aselfjoin enables a Select query to make more than one reference to the same
table. Inthe Select statement this table is given two alias names of “S1” and “S2”.



- Considerthese to be two virtual tables containing identical data in identical
columns.
o Display the all vendor names in the same location as “El Segundo”
=  Select
e V7.name as Vendor_Name, V2.name as Duplicate_Name
= From
e \Vendors as V1, Vendors as V2

= Where
e V1.location=V2.location
= And

e V2.location =“El Segundo”
Creating natural joins

- Anaturaljoinis simply a technique to eliminate a column that contains duplicate
data
o Display each vendor number, name and price

=  Select
e V* R.Price
= From

e \endors asV, Records as R
= Where
e \.id=r.id;

Creating outer joins

- Return data from rows that have no matched relationship. Forinstance, to include
products with zero orders in a list of products and ordered quantities. This can be
achieved by adding the Outer Join keywords to a From clause, preceded by the Left
or Right keyword.

- When Left Outer Join is specified, all the rows in the table specified to the left of this
statement are joined to the table on its right. Vice versa for right.

o Select
= V.name
= R.id
= R.price
o From

= Vendors asV left outer join Records as R
o On
= V.id =R.id;



